Bibliography
[1] Kernighan, B.W. and Ritchie, D.M. 1988. The C Programming Language. Prentice-Hall. Englewood Cliffs.
[2] L.R. Rabiner and J.H. McClellan and T.W. Parks. 1975. FIR Digital Filter Design Techniques Using Weighted Chebyshev Approximations. Proc. IEEE(63).
[3] Oppenheim, A.V. and Schafer, R.W. 1989. Discrete-Time Signal Processing. Prentice-Hall. Englewood Cliffs.
[4] Parks, T.W. and Burrus, C.S. 1987. Digital Filter Design. John Wiley. New York.
[5] Robert K. Otnes and Loren Enochson. 1978. Applied Time Series Analysis. John Wiley and Sons. New York.
[6] Ingrid Daubechies. 1992. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics. Philadelphia.
[7] Rioul, O. and Vetterli, M. 1991 (10). Wavelets and Signal Processing. IEEE Signal Processing Magazine, pages 14--38.
[8] F. Takens. 1981. Detecting strange attractors in turbulence, from Dynamical Systems and Turbulence, Warwick 1980., ed. D. Rand and L. S. Young Springer, Berlin. Pages 366-381.
[9] W. Liebert and H. G. Schuster. 1989. Proper choice of time delay for the analysis of chaotic time series. Phys. Lett., A 142, pages 107.
[10] Ljung, L. 1987. System Identification - Theory for the User. Prentice-Hall. Englewood Cliffs.
[11] W. J. Conover. 1971. Practical Nonparametric Statistics. Wiley. New York.
[12] F. A. Graybill. 1961. An introduction to linear statistical models. McGraw-Hill. New York.
[13] M. Hollander and D.A. Wolfe. 1973. Nonparametric statistical methods. Wiley. New York.
[14] Schlittgen, R. and Streitberg, B.H.J. 1988. Zeitreihenanalyse. R. Oldenbourg. Munich, Vienna.
[15] U. Grenader and M. Rosenblatt. 1957. Statistical analysis of stationary time series. Wiley. New York.
[16] William H. Press and Saul A. Teukolsky and William T. Vetterling
and Brain P. Flannery. 1993. Numerical Recipes in C. Cambridge University Press.
[17] Crochiere, R.E. and Rabiner, L.R. 1983. Multirate Digital Signal Processing. Prentice-Hall. Englewood Cliffs.
[18] W. A. Brock and W. D. Dechert and J. A. Scheinkman. 1986. A test for independence based on the correlation integral. Technical report. University of Wisconsin-Madison.
[19] G. E. P. Box and D. R. Cox. 1964. An analysis of transformations. J. R. Statist. Soc. B, 26, pages 211-252.
[20] Bogert, B. P. and Healy, M.J.R. and Tukey J. W. 1963. The Quefrency Alanysis of Time Series for Echoes: Cepstrum, Pseudo-autocovariance, Cross-Cepstrum and Saphe Cracking, from Proc. Symposium Time Series Analysis., ed. Rosenblatt, M. John Wiley and Sons, New York. Pages 209-243.
[21] Ralf Vandenhouten. 1998. Analyse nichtstationaerer Zeitreihen komplexer Systeme und
Anwendungen in der Physiologie (Non-stationary Time Series Analysis
of Complex Systems and Applications in Physiology). Shaker. Aachen.
[22] Rioul, O. and Duhamel, P. 1992 (03). Fast Algorithms for Discrete and Continuous Wavelet Transforms. IEEE Transactions on Information Theory, 38(2), pages 569--586.
[23] P. Grassberger and I. Procaccia. 1983. Measuring the strangeness of strange attractors. Physica D, 9, pages 189-208.
[24] Peter Grassberger and Itamar Procaccia. 1983. Characterization of strange attractors. Phys. Rev. Lett., 50(5), pages 346-349.
[25] Hong Pi and Carsten Peterson. 1994. Finding the embedding dimension and variable dependencies in time series. Neural Comp., 6, pages 509-520.
[26] C. K. Peng et al. 1995. Statistical properties of DNA sequences. Physica A, 221, pages 180-192.
[27] Matthew B. Kennel and Reggie Brown and Henry D. I. Abarbanel. 1992. Determining embedding dimension for phase-space reconstruction
using a geometrical construction. Phys. Rev. A, 45(6), pages 3403-3411.
[28] W. Liebert and K. Pawelzik and H. G. Schuster. 1991. Optimal embeddings of chaotic attractors from topological considerations. Europhysics Letters, 14(6), pages 521-526.
[29] D.W. Marquardt. 1963. . Journal of the Society for Industrial and Applied Mathematics, 11, pages 431-441.
[30] Mandelbrot, B.B. 1983. The Fractal Geometry of Nature. W.H. Freeman and Company. New York.
[31] Peitgen, H.-O. and Saupe, D. 1988. The Science of Fractal Images. Springer Verlag. Berlin, Heidelberg, New York, Tokyo.
[32] Ende, M. and Louis, A.~K. and Maa\ss, P.
and Mayer-Kress, G. 1996. EEG Signal Analysis by Continuous Wavelet
Transform Techniques, from Nonlinear Techniques in Physiological Timeseries
Analysis., ed. Kantz, H. and Kurths, J. and Mayer-Kress, G. Springer-Verlag, .
[33] Louis, A.~K. and Maa\ss, P. and Rieder, A. 1994. Wavelets. Theorie und Anwendungen. B.~G.~Teubner. Stuttgart.
[34] Mallat, St. 1998. A wavelet tour of signal processing. Academic Press. San Diego, London.
[35] Donoho, David L. Denoising by Soft-Thresholding.
[36] E. L. Lehmann. 1959. Testing statistical hypotheses. Wiley. New York.
[37] Briggs, K. 1990. An improved method for estimating Liapunov exponents of
chaotic time series. Physics Letters A, 151, pages 27-32.
[38] Alan Wolf and Jack B. Swift and Harry L. Swinney and John A. Vastano. 1985. Determining Lyapunov exponents from a time series. Physica D, 16, pages 285-317.
[39] Mohsine Karrakchou and Karin Vibe-Rheymer and Jean-Marc Vesin
and Etienne Pruvot and Murat Kunt. 1996. Improving cardiovascular monitoring through modern techniques. IEEE Eng. Med. and Biol., 15(5), pages 68-78.
[40] B. Schack and G. Grieszbach and M. Arnold and J. Bolten. 1995. Dynamic cross-spectral analysis of biological signals by means of
bivariate ARMA processes with time-dependent coefficients. Med. \& Biol. Eng. \& Comp., 33, pages 605-610.
[41] Simon Haykin. 1996. Adaptive Filter Theory. Prentice Hall. London.
[42] B. Schack and E. Bareshova and G. Grieszbach and H. Witte. 1995. Methods of dynamic spectral analysis by self-exciting autoregressive
moving average models and their application to analysing biosignals. Med. \& Biol. Eng. \& Comp., 33, pages 492-498.
[43] G. Grieszbach and B. Schack and P. Putsche and E. Bareshova and
J. Bolten. 1994. Dynamic description of stochastic signal by adaptive momentary power
and momentary frequency estimation and its application in analysis of biological signals. Med. \& Biol. Eng. \& Comp., 32, pages 632-637.
[44] Laurence Keselbrener and Solange Akselrod. 1996. Selective discrete Fourier transform algorithm for time-frequency
analysis: method and application on simulated and cardiovascular signals. IEEE Trans. Biomed. Eng., 43(8), pages 789-802.
[45] C. E. Shannon and W. Weaver. 1949. The Mathematical Theory of Communication. The University of Illinois Press. Urbana.
[46] Henry D. I. Abarbanel. 1993. The analysis of observed chaotic data in physical systems. Rev. Mod. Physics, 65(4), pages 1331-1392.
[47] A. M. Fraser and H. Swinney. 1986. Independent coordinates for strange attractors from mutual information. Phys. Rev. A, 33, pages 1134-1140.
[48] James E. Skinner and Craig M. Pratt and Tomas Vybiral. 1993. A reduction in the correlation dimension of heartbeat
intervals precedes imminent ventricular fibrillation in human subjects. Am. Heart J., 125(3), pages 731-743.
[49] K. Pawelzik and H. G. Schuster. 1987. Generalized dimensions and entropies from a measured time series. Phys. Rev. A, 35(1), pages 481-484.
[50] Klaus Pawelzik. 1991. Nichtlineare Dynamik und Hirnaktivitaet. Verlag Harri Deutsch. Frankfurt/M..
[51] Donald H. Perkel, George L. Gerstein, George P. Moore. 1967. Neuronal Spike Trains and Stochastic Point Processes. Biophysical Journal, 7, pages 391--440.
[52] Karhunen, H. 1947. Ueber lineare Methoden in der Wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fenn. AI, 37.
[53] Loeve, M. . 1948. Fonctions Aleatoire de Seconde Ordre. Hermann. Paris.
[54] Eckmann, J.-P. and Oliffson Kamphorst, S. and Ruelle, D. 1987. Recurrence plots of dynamical systems. Europhysics Letters, 4, pages 973-979.
[55] Thomas Schreiber. 1993. Extremely simple nonlinear noise-reduction method. Phys. Rev. E, 47(4), pages 2401-2404.
[56] Donoho, David L. and Johnstone, Iain M. 1993 (June). Adapting to unknown smoothness via wavelet shrinkage. Technical report. Stanford University.
[57] James Theiler and Stephen Eubank and Andre Longtin and
Bryan Galdrikian and J. Doyne Farmer. 1992. Testing for nonlinearity in time series: the method of surrogate data. Physica D, 58, pages 77-94.
[58] Peter Grassberger and Thomas Schreiber and Carsten Schaffrath. 1991. Non-linear time sequence analysis. Int. J. Bifurc. \& Chaos, 1, pages 521.
[59] Peter Grassberger and Rainer Hegger and Holger Kantz and Carsten
Schaffrath and Thomas Schreiber. 1993. On noise reduction methods for chaotic data. Chaos, 3, pages 127-141.
[60] Peter J. Diggle. 1990. Time Series - A Biostatistical Introduction. Clarendon Press. Oxford.
[61] M. Desai and D. Shazeer. 1991 (Aug.). Acoustic transient analysis using wavelet decomposition, from Proceedings of the IEEE conference on neural networks for ocean engineering. Washington.
[62] I. N. Bronstein and K. A. Semendjajew. 1987. Taschenbuch der Mathematik. Verlag Harri Deutsch. Thun/Frankfurt.
[63] Kantz, H. and Kurths, J. and Mayer-Kress, G. 1998. Nonlinear Techniques in Physiological Time Series Analysis. Springer Verlag. Berlin, Heidelberg, New York, Tokyo.
[64] Best, J.S. and Charlton, J.C. and Mayer-Kress, G.J. 1996. Analysis of Galaxy Morphology and Evolution using the Pointwise Dimension. Astrophysical Journal, 55, pages 456.
[65] Birbaumer, N. and Lutzenberger, W. and Rau, H. and Mayer-Kress, G. and Braun, C. 1996. Perception of Music and Dimensional Complexity of Brain Activity. Intl. Journal of Bifurcations and Chaos, 6(2), pages 267--278.
[66] Parlitz, U. and Mayer-Kress, G. 1995 (4). Predicting Low Dimensional Spatio-Temporal Dynamics Using Discrete Wavelet Transforms. Phys. Rev. E.
[67] Mayer-Kress, G. 1994 (July-September). Localized Measures for Non-Stationary Time-Series of Physiological Data. Integrative Physiological and Behavioral Science, 29(3), pages 203.
[68] Koebbe, M. and Mayer-Kress, G. 1992. Use of Recurrence Plots in the Analysis of Time-Series Data, from Nonlinear Modelling and Forecasting, SFI Studies in the
Sciences of Complexity, Proc. Vol. XII., ed. Casdagli, M. and Eubank, S. Addison-Wesley.
[69] Mayer-Kress, G. and Barczys, C. and Freeman, W.J. 1991. Attractor Reconstruction from Event-Related Multi-Electrode EEG-Data, from Proceedings of the International Symposium ``Mathematical Approaches To Brain Functioning Diagnostics''., ed. Holden, A.V. World Scientific.
[70] Zbilut, J. and Koebbe, M. and Loeb, H. and Mayer-Kress, G. 1990 (September). Use of Recurrence Plots in the Analysis of Heart Beat Intervals, from Proc. IEEE conf. computers in cardiology. Chicago.
[71] Mayer-Kress, G. and Hubler, A. 1990. Time evolution of local complexity measures and aperiodic perturbations of nonlinear dynamical systems, from Measures of Complexity and Chaos., ed. Abraham, N.B. and Albano, A.M. and Passamante, A. and Rapp P.E. Plenum, New York. Pages 155--172.
[72] Elgar, S. and Mayer-Kress, G. 1989. Observations of the Fractal Dimension of Deep and Shallow Water Ocean Surface Gravity Waves. Physica D, 37, pages 104--108.
[73] Zbilut, J.P. and Mayer-Kress, G. and Geist, K. 1988 (July/August). Dimensional Analysis of Heart Rate Variability in Heart Transplant Recipients. Mathematical Biosciences, 90, pages 49--70.
[74] Mayer-Kress, G. and Yates, F.E. and Benton, L. and Keidel, M. and Tirsch, W. and Poppl, S.J. and Geist, K. 1988. Dimensional Analysis of Nonlinear Oscillations in Brain, Heart and
Muscle. Mathematical Biosciences, 90, pages 155--182.
[75] Mayer-Kress, G. and Holzfuss, J. 1987. Analysis of the Human Electroencephalogram with Methods from Nonlinear Dynamics, from Proc. of Temporal Disorder in Human Oscillatory Systems,
Springer Series in Synergetics, Vol. 36., ed. Rensing, L. and an der Heyden, W. and Mackey, M.C. Springer Verlag, Berlin, Heidelberg. Pages 57--68.
[76] Mayer-Kress, G. and Layne, S.P. 1987. Dimensionality of the Human Electroencephalogram, from Perspectives in Biological Dynamics and Theoretical
Medicine., ed. Koslow, S.H. and Mandell, A.J. and Shlesinger, M.F. New York. 504 Pages 62--86.
[77] Mayer-Kress, G. and Kurz, Th. 1987. Dimension Density of Coupled Map Lattices. J. Complex Systems, 1, pages 821-829.
[78] Mayer-Kress, G. 1987. Application of Dimension Algorithms to Experimental Chaos, from Directions in Chaos., ed. Hao Bai-lin World Scientific Publishing Company, Singapore. Pages 122--147.
[79] Mayer-Kress, G. 1986. Dimensions and Entropies in Chaotic Systems Springer Verlag, Berlin, Heidelberg, New York, Tokyo. 32 Pages 114--122.
[80] Buldyrev, S.V. and Goldberger, A.L. and Havlin, S. 1994. Fractals in biology and medicine: From DNA to Heartbeat., from Fractals in Science., ed. A. Bunde and S. Havlin Springer Verlag, Berlin, Heidelberg, New York, Tokyo. 32
[81] Thomas Elbert and William J. Ray and Zbigniew J. Kowalik and James E.
Skinner and Karl Eugen Graf and Niels Birbaumer. 1994. Chaos and physiology: deterministic chaos in excitable cell assemblies. Physiol. Rev., 74(1), pages 1-47.